Journal of Orthopedics and Joint Surgery

Register      Login

VOLUME 3 , ISSUE 1 ( January-June, 2021 ) > List of Articles

Original Article

Comparing Health-related Quality of Life of Lenke 1–2, and Lenke 5–6 Severe AIS Adolescent Idiopathic Scoliosis Patients 2 Years after Surgery Using SRS-22 Questionnaire

Wai-Wang Chau, Victor Illescas, Bobby Kin-Wah Ng

Citation Information : Chau W, Illescas V, Ng BK. Comparing Health-related Quality of Life of Lenke 1–2, and Lenke 5–6 Severe AIS Adolescent Idiopathic Scoliosis Patients 2 Years after Surgery Using SRS-22 Questionnaire. 2021; 3 (1):23-30.

DOI: 10.5005/jp-journals-10079-1039

License: CC BY-NC 4.0

Published Online: 07-07-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Introduction: Lenke classification organizes curve patterns into six major “curve types”. Health-related quality of life (HRQOL) in AIS patients is gaining attention particularly on whose undergone surgery and findings are sometimes not expected. Comparisons of HRQOL in severe patients between Lenke 1 (main thoracic) and Lenke 2 (double thoracic) and patients with Lenke 5 (thoracolumbar/lumbar) and Lenke 6 (thoracolumbar/lumbar-main thoracic) curve types have yet to be carried out. Materials and methods: Forty-six severe AIS patients classified Lenke type 1, 2, 4, and 5 undergone surgery from 2016 to 2019 were recruited. Demographic variables and surgical details were collected. Patients filled out the SRS-22 questionnaire at (1) Before surgery (preoperative), (2) Before hospital discharge (post-op1), (3) 1 year postoperative (post-op2), and (4) 2 years post-op (post-op3). Statistical comparisons of HRQOL domain scores were carried out between Lenke 1 + 2 group and Lenke 5 + 6 group longitudinally and between groups. Results: The mean age at surgery is 18.14 years. Longitudinal comparisons showed “Function” and “Pain” scores dropped before hospital discharge and recovered at post-op follow-ups. “Function” and “Pain” in Lenke 1 + 2 group at between-group comparisons were significantly higher than Lenke 5 + 6. Self-image, satisfaction, and mean scores were also higher in Lenke 1 + 2 without statistical significance. Conclusion: All domains showed improvements 2 years after surgery in both Lenke type groups, of which significant improvements were statistically found in “Function”, “Pain”, and “Mental health” in Lenke 1 + 2 patients. Key messages: • All HRQOL domains in both Lenke 1 + 2 (main thoracic + double thoracic) group and Lenke 5 + 6 (thoracolumbar/lumbar + thoracolumbar/lumbar-main thoracic) group improved after spinal surgery. • “Function”, “Pain”, and “Mental health” in patients of Lenke 1 + 2 group significantly were improved statistically than patients in Lenke 5 + 6 group. • “Self-image” and “Satisfaction” were also improved without statistical significance.

  1. Lenke LG, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 2001;83(8):1169–1181. DOI: 10.2106/00004623-200108000-00006.
  2. Lenke LG. Lenke classification system of adolescent idiopathic scoliosis: treatment recommendations. Instr Course Lect 2005;54:537–542.
  3. O'Donnell C, Michael N, Pan X, et al. Anterior spinal fusion and posterior spinal fusion both effectively treat Lenke type 5 curves in adolescent idiopathic scoliosis: a multicenter study*. Spine Deformity 2018;6(3):231–240. DOI: 10.1016/j.jspd.2017.09.054.
  4. Abel MF, Singla A, Feger MA, et al. Surgical treatment of Lenke 5 adolescent idiopathic scoliosis: comparison of anterior vs posterior approach. World J Orthop 2016;7(9):553–560. DOI: 10.5312/wjo.v7.i9.553.
  5. Dong Y, Weng X, Zhao H, et al. Lenke 5C curves in adolescent idiopathic scoliosis: anterior vs posterior selective fusion. Neurosurgery 2016;78(3):324–331. DOI: 10.1227/NEU.0000000000001055.
  6. Okada E, Watanabe K, Pang L, et al. Posterior correction and fusion surgery using pedicle-screw constructs for Lenke type 5C adolescent idiopathic scoliosis: a preliminary report. Spine (Phila Pa 1976) 2015;40(1):25–30. DOI: 10.1097/BRS.0000000000000652.
  7. Newton PO, Marks MC, Bastrom TP, et al. Surgical treatment of Lenke 1 main thoracic idiopathic scoliosis: results of a prospective, multicenter study. Spine (Phila Pa 1976) 2013;38(4):328–338. DOI: 10.1097/BRS.0b013e31826c6df4.
  8. Albayrak A, Buyuk AF, Ucpunar H, et al. Pre- and postoperative photographs and surgical outcomes in patients with Lenke type 1 adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2015;40(7):469–474. DOI: 10.1097/BRS.0000000000000796.
  9. Senkoylu A, Luk KDK, Wong YW, et al. Prognosis of spontaneous thoracic curve correction after the selective anterior fusion of thoracolumbar/lumbar (Lenke 5C) curves in idiopathic scoliosis. Spine J 2014;14(7):1117–1124. DOI: 10.1016/j.spinee.2013.07.467.
  10. Luo M, Wang W, Shen M, et al. Anterior versus posterior approach in Lenke 5C adolescent idiopathic scoliosis: a meta-analysis of fusion segments and radiological outcomes. J Orthop Surg Res 2016;11(1):77. DOI: 10.1186/s13018-016-0415-9.
  11. Chen J, Yang C, Ran B, et al. Correction of Lenke 5 adolescent idiopathic scoliosis using pedicle screw instrumentation: does implant density influence the correction? Spine (Phila Pa 1976) 2013;38(15):E946–E951. DOI: 10.1097/BRS.0b013e318297bfd4.
  12. Cheng JC, Castelein RM, Chu WC, et al. Adolescent idiopathic scoliosis. Nat Rev Dis Prim 2015;1(1):15030. DOI: 10.1038/nrdp.2015.30.
  13. Ghandehari H, Mahabadi MA, Mahdavi SM, et al. Evaluation of atient outcome and satisfaction after surgical treatment of adolescent idiopathic scoliosis using scoliosis research society-30. Archi Bone Joint Surg 2015;3:109–113.
  14. Negrini S, Aulisa AG, Aulisa L, et al. 2011 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis 2012;7(1):3. DOI: 10.1186/1748-7161-7-3.
  15. Jr Z, Ma G. Adolescent idiopathic scoliosis: an in depth analysis and historical review. MOJ Orthop Rheumatol 2015. 3.
  16. Dayer R, Haumont T, Belaieff W, et al. Idiopathic scoliosis: etiological concepts and hypotheses. J Child Orthop 2013;7(1):11–16. DOI: 10.1007/s11832-012-0458-3.
  17. Forsberg D, Lundström C, Andersson M, et al. Model-based registration for assessment of spinal deformities in idiopathic scoliosis. Phys Med Biol 2014;59(2):311–326. DOI: 10.1088/0031-9155/59/2/311.
  18. Weinstein SL, Dolan LA, Cheng JC, et al. Adolescent idiopathic scoliosis. Lancet 2008;371(9623):1527–1537. DOI: 10.1016/S0140-6736(08)60658-3.
  19. Maruyama T, Takeshita K. Surgical treatment of scoliosis: a review of techniques currently applied. Scoliosis 2008;3(1):6. DOI: 10.1186/1748-7161-3-6.
  20. Weinstein SL, Zavala DC, Ponseti IV. Idiopathic scoliosis: long-term follow-up and prognosis in untreated patients. J Bone Joint Surg Am 1981;63(5):702–712. DOI: 10.2106/00004623-198163050-00003.
  21. Weinstein SL, Dolan LA, Spratt KF, et al. Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. JAMA 2003;289(5):559–567. DOI: 10.1001/jama.289.5.559.
  22. Collis DK, Ponseti IV. Long-term follow-up of patients with idiopathic scoliosis not treated surgically. J Bone Joint Surg Am 1969;51(3):425–445. DOI: 10.2106/00004623-196951030-00001.
  23. Weiss HR, Karavidas N, Moramarco M, et al. Long-term effects of untreated adolescent idiopathic scoliosis: a review of the literature. Asian Spine J 2016;10(6):1163–1169. DOI: 10.4184/asj.2016.10. 6.1163.
  24. Chau WW, Ng BK, Hung AL. Health-related quality of life (HRQOL) of adolescent idiopathic scoliosis (AIS) patients from surgery to after 30 years using SRS-22 questionnaire. Spine Deform 2020;8(5):951–956. DOI: 10.1007/s43390-020-00132-2.
  25. Bagó J, Climent JM, Pérez-Grueso FJS, et al. Outcome instruments to assess scoliosis surgery. Eur Spine J 2013;22(Suppl 2):S195–S202. DOI: 10.1007/s00586-012-2352-6.
  26. Koch KD, Buchanan R, Birch JG, et al. Adolescents undergoing surgery for idiopathic scoliosis: how physical and psychological characteristics relate to patient satisfaction with the cosmetic result. Spine (Phila Pa 1976) 2001;26(19):2119–2124. DOI: 10.1097/00007632-200110010-00015.
  27. Merola AA, Haher TR, Brkaric M, et al. A multicenter study of the outcomes of the surgical treatment of adolescent idiopathic scoliosis using the scoliosis research society (SRS) outcome instrument. Spine (Phila Pa 1976) 2002;27(18):2046–2051. DOI: 10.1097/00007632-200209150-00015.
  28. Scoliosis_Research_Society. [Patient Outcome Questionnaires], 2003. Available at: Accessed October 9, 2018.
  29. Asher M, Min Lai S, Burton D, et al. The reliability and concurrent validity of the scoliosis research society-22 patient questionnaire for idiopathic scoliosis. Spine (Phila Pa 1976) 2003;28(1):63–69. DOI: 10.1097/00007632-200301010-00015.
  30. Glassman SD, Bridwell KH, Shaffrey CI, et al. Health-related quality of life scores underestimate the impact of major complications in lumbar degenerative scoliosis surgery. Spine Deform 2018;6(1):67–71. DOI: 10.1016/j.jspd.2017.05.003.
  31. Arima H, Carreon LY, Glassman SD, et al. Age variation in the minimum clinically important difference in SRS-22r after surgical treatment for adult spinal deformity - a single institution analysis in Japan. J Orthop Sci 2018;23(1):20–25. DOI: 10.1016/j.jos.2017.09.015.
  32. Akazawa T, Minami S, Kotani T, et al. Long-term clinical outcomes of surgery for adolescent idiopathic scoliosis 21 to 41 years later. Spine (Phila Pa 1976) 2012;37(5):402–405. DOI: 10.1097/BRS.0b013e31823d2b06.
  33. Akazawa T, Kotani T, Sakuma T, et al. Midlife changes of health-related quality of life in adolescent idiopathic scoliosis patients who underwent spinal fusion during adolescence. Eur J Orthop Surg Traumatol 2018;28(2):177–181. DOI: 10.1007/s00590-017-2027-4.
  34. Rushton PR, Grevitt MP. What is the effect of surgery on the quality of life of the adolescent with adolescent idiopathic scoliosis? a review and statistical analysis of the literature. Spine 2013;38(9):786–794. DOI: 10.1097/BRS.0b013e3182837c95.
  35. Chau W-W, Illescas V, Ng B. Correlation of curve flexibility analysis with patient health outcomes after scoliosis surgery using scoliosis research society-22 questionnaire. J Orthop, Traumatol Rehabilitat 2020;12(1):42–48. DOI: 10.4103/jotr.jotr_54_19.
  36. Ng B, Chau W-W. Changes of shoulder balance, sagittal alignments, and curve correction in the treatment of Lenke 1 and 2 adolescent idiopathic scoliosis using a three-dimensional-based correction strategy in correlation to health-related quality of life using the scoliosis research society-22 questionnaire. J Orthoped, Traumatol Rehabilitat 2020;12(1):6–12. DOI: 10.4103/jotr.jotr_46_19.
  37. Zhao J, Fan J, Chen Y, et al. A retrospective controlled clinical study of Cobb angle distribution of the main thoracic curve in adolescent idiopathic scoliosis. Medicine 2018;97(28):e11473. DOI: 10.1097/MD.0000000000011473.
  38. Carrasco MIB, Ruiz MCS. Perceived self-image in adolescent idiopathic scoliosis: an integrative review of the literature. Revista da Escola de Enfermagem da USP 2014;48(4):748–757. DOI: 10.1590/s0080-623420140000400024.
  39. Chan YL, Siu YW, Chau WW, et al. CSF motion at the cranio-cervical junction in adolescent idiopathic scoliosis - a phase contrast MR velocimetry study. International Research Society for Spinal Deformities. Vancouver, Canada 2004. p. 250.
  40. Ilharreborde B, Ferrero E, Angelliaume A, et al. Selective versus hyperselective posterior fusions in Lenke 5 adolescent idiopathic scoliosis: comparison of radiological and clinical outcomes. Eur Spine J 2017;26(6):1739–1747. DOI: 10.1007/s00586-017-5070-2.
  41. Chaib Y, Bachy M, Zakine S, et al. Postoperative perceived health status in adolescent following idiopathic scoliosis surgical treatment: results using the adapted French version of scoliosis research society outcomes questionnaire (SRS-22). Orthop Traumat Surg Res 2013;99(4):441–447. DOI: 10.1016/j.otsr.2013.03.012.
  42. Sponseller PD, Flynn JM, Newton PO, et al. The association of patient characteristics and spinal curve parameters with Lenke classification types. Spine 2012;37(13):1138–1141. DOI: 10.1097/BRS.0b013e31824054a5.
  43. Mimura T, Ikegami S, Kuraishi S, et al. Residual thoracolumbar/lumbar curve is related to self-image after posterior spinal fusion for Lenke 1 and 2 curves in adolescent idiopathic scoliosis patients. J Neurosurg Pediatr 2020;26(2):211. DOI: 10.3171/2020.2.PEDS19656.
  44. Bastrom TP, Bartley C, Marks MC, et al. Postoperative perfection: ceiling effects and lack of discrimination with both SRS-22 and -24 outcomes instruments in patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2015;40(24):E1323–E1329. DOI: 10.1097/BRS.0000000000001082.
  45. Caronni A, Zaina F, Negrini S. Improving the measurement of health-related quality of life in adolescent with idiopathic scoliosis: the SRS-7, a rasch-developed short form of the SRS-22 questionnaire. Res Dev Disabil 2014;35(4):784–799. DOI: 10.1016/j.ridd.2014.01.020.
  46. Sanders JO, Carreon LY, Sucato DJ, et al. Preoperative and perioperative factors effect on adolescent idiopathic scoliosis surgical outcomes. Spine (Phila Pa 1976) 2010;35(20):1867–1871. DOI: 10.1097/BRS.0b013e3181efa6f5.
  47. Wang L, Wang YP, Yu B, et al. Relation between self-image score of SRS-22 with deformity measures in female adolescent idiopathic scoliosis patients. Orthop Traumatol Surg Res 2014;100(7):797–801. DOI: 10.1016/j.otsr.2014.06.014.
  48. Aghdasi B, Bachmann KR, Clark D, et al. Patient-reported outcomes following surgical intervention for adolescent idiopathic scoliosis: a systematic review and meta-analysis. Clin Spine Surg 2020;33(1):24–34. DOI: 10.1097/BSD.0000000000000822.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.